The Folsom Lake College engineering curriculum provides the foundation in mathematics, physics, and engineering necessary to transfer to a university and complete a bachelor’s degree in engineering. Engineering involves the application of scientific and mathematical principles needed to solve practical technical problems. Although the first two years of engineering courses for all engineering degrees are similar, students should consult the lower division requirements of the institution to which they wish to transfer.

Career Options (/academics/programs-and-majors/engineering#)

Aerospace Engineer
Architectural Engineer
Biomedical Engineer
Chemical Engineer
Civil Engineer
Computer Engineer
Electrical Engineer
Environmental Engineer
Mechanical Engineer

Most career options require more than two years of college study.

Highlights (/academics/programs-and-majors/engineering#)

- Challenging and rewarding classes that transfer to four-year universities

ENGR 303 Introduction to Logic Design

<table>
<thead>
<tr>
<th>Units:</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours:</td>
<td>54 hours LEC; 54 hours LAB</td>
</tr>
<tr>
<td>Prerequisite:</td>
<td>None.</td>
</tr>
<tr>
<td>Advisory:</td>
<td>Some previous exposure to programming at the high school level or above.</td>
</tr>
<tr>
<td>Transferable:</td>
<td>CSU</td>
</tr>
</tbody>
</table>

This is an introductory course in the fundamentals of designing digital computer hardware. This course covers: logic gates, binary number system, conversion between number systems, Boolean algebra, Karnaugh maps, combinational logic, digital logic design, flip-flops, programmable logic devices (PLDs), counters, registers, memories, state machines, designing combinational logic and state machines into PLDs, and basic computer architecture. The lab is design oriented and emphasizes the use of software equation entry tools, schematic entry, and logic simulation tools. Lab assignments are design oriented. This course is required for Electrical/Electronics Engineering and Computer Engineering majors at some universities. This course is also helpful for Computer Science majors, electronics technicians, and for students wishing to sample computer engineering.

Student Learning Outcomes

Upon completion of this course, the student will be able to:
• identify common elementary digital components such as logic gates, flip-flops, programmable logic devices (PLDs), counters, registers, memories, and state machines.

• analyze a digital design problem using combinational logic, binary and other number systems, Boolean algebra, and Karnaugh maps.

• design a solution to a complex digital logic design problem and implement this solution using one or more simulation tools.

• utilize hierarchical design methodology to combine smaller components into a larger design.

ENGR 312 Engineering Graphics

Units:	3
Hours:	36 hours LEC; 72 hours LAB
Prerequisite:	None.
Advisory:	MATH 110
Transferable:	CSU; UC

This course applies the graphical tools needed to analyze, interpret, and solve engineering problems. The engineering design process is taught using manual tools and computer-aided design and drafting (CADD) tools to solve typical engineering problems. Topics include descriptive geometry, vector graphics, orthogonal projection, primary and secondary auxiliary views, geometric dimensioning and tolerancing (GD&T), 3D solid modeling, and an introduction to finite element analysis (FEA) tools. This course is intended for mechanical and civil engineering majors, but may also be required for other programs.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• create fully dimensioned orthographic projection drawings of objects by hand and by using CADD software.

• construct sectional and auxiliary views of objects.

• determine appropriate tolerances on components.

• create a solution to a simple design problem, culminating in working drawings.

• utilize 2D and 3D software tools to create layouts and models.

ENGR 400 Introduction to Electrical Circuits and Devices

Units:	3
Hours:	54 hours LEC
Prerequisite:	PHYS 421 with a grade of "C" or better
Corequisite:	MATH 420
Transferable:	CSU; UC
C-ID:	C-ID ENGR 260

This course will provide engineering students with circuit analysis concepts and applications that will be of value in any engineering field as well as a solid foundation for electrical engineering and related majors. The course includes the analysis of circuits with resistors, inductors, capacitors, and independent and dependent voltage and current sources. Many analysis techniques will be applied to DC and AC circuits. Differential equations will be used to find the transient response of circuits. Power calculations will be performed on both DC and AC circuits, including an introduction to three-phase AC power. This course is required for most engineering Bachelors of Science degrees.

Student Learning Outcomes

Upon completion of this course, the student will be able to:

• analyze electric circuits for DC, transient, and AC voltage and current responses.
ENGR 420 Statics

This is the first course in engineering mechanics. Topics in this course include two and three dimensional force system analysis using vector techniques, moments and couples in two and three dimensions, centroids and moment of inertia, friction, forces in beams, and truss analysis. This course is required for mechanical, civil, aeronautical engineering transfer students and by some electrical engineering programs.

Student Learning Outcomes
Upon completion of this course, the student will be able to:

- apply vector mathematical principles to determine 2-dimensional and 3-dimensional forces, moments and equivalent force/force-couples.
- apply equilibrium principles to determine the external forces of both 2-dimensional and 3-dimensional rigid bodies in static equilibrium.
- apply equilibrium principles to determine the internal forces of beams, trusses, frames and machines.
- determine the centroids and moments of inertia of 2-dimensional and 3-dimensional bodies using algebra and calculus principles.

ENGR 495 Independent Studies in Engineering

Chuck Brown
Adjunct Professor
